If it's not what You are looking for type in the equation solver your own equation and let us solve it.
10x-8x^2=0
a = -8; b = 10; c = 0;
Δ = b2-4ac
Δ = 102-4·(-8)·0
Δ = 100
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{100}=10$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(10)-10}{2*-8}=\frac{-20}{-16} =1+1/4 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(10)+10}{2*-8}=\frac{0}{-16} =0 $
| 4x-22=34 | | 7x-10=-32 | | 21.24=x+.18x | | 42x+44=2x+54 | | 5x+34=2x-26 | | 42x+44=2x+4 | | 5.7x+27=6.7x+13 | | (1/x)/50=25 | | 1/x/50=25 | | 5x²-90=10+4x² | | 10^x=(0.06)^6 | | 1/3*x-7=3/4*x+3 | | 1/3x-7=3/4x+3 | | x+19/5=18 | | 49/10+3/11+7/15=x | | 16/2x=-24 | | 1.05*x=180 | | -4x-8x+29=15x+13 | | 2(3c+1)-2=0 | | X=3,y=7 | | (3y+4)-6=0 | | 7d+22=5d+48 | | 16t^2-198t+46=0 | | 3x+18=7x+15 | | 16t^2-137t+30=0 | | 3m+4-9=10 | | 2b+24=72 | | x2/3=x/2+5/6 | | 9-3.6x=0 | | x2+12=156 | | 2x-15-6=0 | | -2(3y+12)-7=-3y+1 |